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Abstract: Filtration of particle debris is an important component of the polymer fiber

melt-spinning process. The filter lifespan is determined by the pressure drop across the

filter, which increases as debris accumulates inside the filtration medium. The cost of

filter replacement is high, as is the cost of a loss of the finished fiber product due to

debris inclusion in the spun fiber. We use a multiobjective genetic algorithm to

examine the trade-off curve that evolves from these competing goals. A “blackbox”

simulator models the debris deposition, and we choose filter porosity and pore

diameter as the design variables. We provide numerical results and analysis for two

sets of competing objectives.

Keywords: Polymer processing, debris filtration, multi-objective, genetic algorithm

INTRODUCTION

Modeling of an entire fiber-spinning process is of great interest to researchers

in the Center for Advanced Engineering Fibers and Films (CAEFF). Initial

funding for CAEFF has been provided through the Engineering Research

Centers Program of the National Science Foundation, and CAEFF is transi-

tioning to a self-supported fiber and film research center. More information

can be found at the CAEFF website (1).
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One of the primary missions of CAEFF is to aid industrial partners in the

development and manufacture of new polymer products. Towards this end,

members of CAEFF have developed simulation tools for the various stages

of fiber production, from the initial polymer melt to the finished product

(see Fig. 1). One of the simulation tools is a three-dimensional model of an

extrusion filter, which separates debris particles from the polymer before

the polymer is spun into a fiber. Fibers are formed by pushing the molten

polymer through a spinneret, which is a multi-pored extrusion device. The

polymer solidifies into a fiber once it exits the spinneret and is exposed to

quench air. The properties of the fiber are severely compromised if debris

particles remain in the polymer during this part of the process, and this may

result in the loss of an entire production unit. In addition, replacing the

filter is costly; it often requires that the entire spinline be taken out of

service. While in-line filter replacement processes are being introduced,

Hookway (2) states that the trend in industry is to use “staged filtration,”

i.e., combining in-line filters with a filter at the spinneret.

A rough estimate of the cost associated with downtime due to filter

replacement is as follows. From (3), the profit on one metric ton of

polyester has averaged, over the last five years, $100 (a modest estimate).

Taking a typical flow rate of PET to be 2.5 g/min/hole, and figuring 3000

holes in a single spinneret, gives a loss in profit per hour of $45 when a

filter above a spinneret gets clogged. A large fiber-producing plant may

have several spinning lines with each containing 100 spinnerets. Furthermore,

PET is a high volume, low-cost commodity polymer. The financial impact of

short filter life on low volume, high profit (e.g. functional) fiber production

would be significantly greater.

Figure 1. Fiber melt-spinning process.
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The filter is often composed of a sintered metal, compressed with suffi-

cient force to produce a cake material, or layers of wired mesh, with mesh

spacings small enough to trap particles a few microns in diameter.

Important design parameters thus include the number of distinct filter layers

and the characteristics of each layer. These characteristics include the

length of the layer, the porosity, and the average diameter of the pore

spaces. The overall lifespan of the filter depends not only on the filter

design specifications but on the debris profile for the polymer being processed.

Previous CAEFF work on filtration (4, 5) focused on the development of

model equations, numerical simulation, and comparisons of the simulations

with experimental data. Pressure drop values were calculated for several

distinct fluid and filter types, and the results suggested that the simulator

accurately modeled the deposition process. In this work, we seek to under-

stand the effects of design parameters on the performance of the filter. We

measure the performance of a filter by the lifetime of the filter (determined

by the maximum allowable pressure drop across the filter) and the effective-

ness of the filter in debris removal. Maximizing the filter lifetime, while

simultaneously minimizing the mass of debris that escapes the filter, defines

an optimization problem with competing objectives. Clearly, a filter will

last longer if it traps nothing.

For this preliminary study, we use the initial porosity of the filter and the

average pore size diameter as the design variables. We analyze the perform-

ance using a multiobjective genetic algorithm to generate a set of Pareto

optimal solutions (6, 7). A design engineer can use these Pareto solutions to

find a preferred design as opposed to a completely optimal design, which

may not even exist as improvement in one of our objective functions necess-

arily leads to degradation in the other. We consider a nondominated, sorting

genetic algorithm (NSGA-II) (8) to generate the tradeoff curve.

The optimization problem is a simulation-based or “black-box” problem,

since an evaluation of the objectives requires output from the extrusion filter

simulator. This is a challenging class of problems because gradient infor-

mation, which is traditionally used to locate critical points, is not available.

Further adding to the complexity of this work is the fact that one simulation

can take anywhere from a few seconds to several hours, depending on the

filter parameters.

Traditional methods often combine competing objectives into a single

functional. Weights can be incorporated into the single objective to balance

the relative goals of the design. However, it is not always the case that the

single objective accurately achieves the same purpose as the multiobjective

approach (9–11). Moreover, the single objective function leads to one

optimal point rather than a family of points that characterize the design

space. This work is a first attempt to use optimization algorithms in conjunc-

tion with a three-dimensional polymer filtration simulation tool. This initial

study is meant to help us understand the interplay between our chosen

design parameters and the capabilities of the filter.
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The paper is organized as follows. In Section 2, we describe the simu-

lation tool. In Section 3, we discuss the multiobjective functionals and

describe the genetic algorithm (GA). In Section 4, we provide numerical

results along with profiles of the design space. We summarize our findings

and provide direction for future work in Section 5.

FILTRATION MODEL

A schematic of the fiber melt-spinning process is given in Fig. 1. The metering

pump is used to maintain a constant flow rate; large pressure drops due to

debris loading can adversely affect the pump. In addition, debris particles

must be removed before the polymer reaches the spinneret. After that point,

any remaining debris particles will be spun into the fiber, leading to degra-

dation in fiber properties.

The filtration code (i.e., the “simulator”) used for this work is based on

results from CAEFF researchers. In (12), Edie and Gooding studied one-dimen-

sional filtration equations to predict pressure drop across a filter medium. This

work was extended to three dimensions by Seyfzadeh, Zumbrunnen, and Ross

(5), which led to the development of the simulator. A restricted version of the

filtration simulator is available for academic use only; a full-featured licensed

version is also available.More information is available from theCAEFFwebsite.

The material entering the filter consists of molten polymer, unmelted

polymer gel particles (formed when the polymer does not completely melt

in the heating/mixing stage), and other debris such as metal particles. It is

assumed that the density of the mixture is the same as the polymer density,

i.e., the density of the debris is negligible in comparison to the polymer

density. It is also assumed that the thickness of the filter is small so that

effects due to gravity can be ignored (5, 12).

The flow through the filter is governed by the continuity equation (mass

conservation) and Darcy’s law, modified to account for the non-Newtonian

behavior of the polymer melt. The debris entering the filter is specified in

terms of a mass fraction relative to the mass of the mixture.

As the flow enters a computational cell, the mass of captured debris of

each distinct material type is calculated. This mass is determined by

comparing the debris particle sizes against the average pore diameter of the

cell. All of the debris particles larger than the pore diameter are partitioned

into an array. A retention function is then used to determine how many of

these particles will be captured by the filter. Any particles not captured

within that computational cell are transported into adjacent cells.

The porosity is updated by subtracting the volume of deposited debris

over the time step from the porosity value at the beginning of the time step.

The volume is obtained by multiplying the mass deposited by the density of

that particular debris type. After the porosity is updated, a new average pore

diameter for the computational cell is calculated.

Design Analysis of Polymer Filtration 713

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
1
8
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



The new values for porosity and pore diameter are used to calculate the

permeability and pressure drop. The permeability parameter k is currently

modeled using a Blake-Kozeny relationship that depends on the average

diameter of the filter pore size, dp, and the current filter porosity, h. The

filter porosity is a dimensionless quantity that measures the volume of the

void space to the total volume of the medium. The relationship for k,

derived in (13) and used in (5, 12), is

k ¼
d2

ph
3

150ð1� hÞ2
:

This permeability relationship is valid for fluids with Reynolds number less

than 1. The Reynolds number associated with our simulations, calculated

using the formula in (14), is around 1025.

The simulator is written in Matlab. For one particle size/porosity pair, an
execution takes approximately 160 minutes on a Dell Latitude D620 laptop

with an Intel core duo 1.83 Ghz processor. Additional details about the

filtration simulator can be found in (5).

Debris loading is characterized statistically, as in (2). Truncated normal

statistical distributions provide flexibility in fitting experimental measure-

ments. Inflow distributions are specified using a standard normal probability

density function,

f ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p e�
1
2

x�m

sð Þ
2

a left truncated normal distribution of the form

fLTNðxÞ ¼

0 �1 , x � xL

f ðxÞÐ1
xL

f ðxÞdx
xL , x , 1

8<
:

and a right truncated normal distribution

fRTNðxÞ ¼

f ðxÞÐ xR

�1
f ðxÞdx

�1 , x � xR

0 xR , x , 1

8<
:

respectively.

Filters are often composed of multiple layers. Each layer is characterized

by a porosity, an average pore diameter, and a retention function. The

retention function models the efficiency of the filter by providing the prob-

ability that a particle of a given size is captured by the filter. The graph of a

typical retention function is displayed in Fig. 2. The retention functions are

found by fitting empirical data to a growth function of Boltzmann-

Sigmoidal type with four fitting parameters (5).
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As the filter clogs, the volume of the void space decreases, leading to a

decrease in the permeability. The pressure drop must then increase in order

to maintain a constant mass flow rate throughout the filter. The large values

of pressure required at the inlet may lead to damage of the metering pump

(see Fig. 1), so the filter must be replaced once the pressure drop reaches a

threshold value. The threshold value is set at 35e6 Pa in the simulator,

which is comparable to existing industry thresholds (5).

OPTIMIZATION STRATEGY

Our goal is to maximize the lifetime of a filter while simultaneously mini-

mizing the amount of debris that escapes. These are competing objectives

relative to the design parameters porosity (h) and pore diameter (dp). For

instance, if h ¼ 1, then the filter is completely open and no debris is

trapped inside the filter; thus the filter lasts indefinitely. If h ¼ 0, then the

no debris escapes from the filter but the filter lifetime is zero.

We pose the optimization problem as

max J1 ðx;wÞ

min J2 ðx;wÞ

subject to x [ V; ð1Þ

where J1 represents the lifetime of the filter, J2 is a measure of the mass of

debris escaping the filter, x ¼ fh, dpg, w is output from the simulator, and V

defines the bound constraints component-wise on the decision variables xi.

Specifically, V ¼ fu [ IR2:Li � xi � Uig, i ¼ 1, 2, where the upper and

lower bounds Li and Ui satisfy 0 , Li , Ui , 1.

Figure 2. Typical filter retention function.
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Approaching Eq. (1) using the NSGA-II algorithm, described below,

leads to a set of Pareto points. Pareto solutions are those for which improve-

ment in one objective can only occur with the worsening of another objective.

We consider two distinct formulations of Eq. (1), which differ in the definition

of J2. We describe the formulations below.

Problem Formulations

Both formulations define J1 as the time it takes for the pressure drop to reach

35e6 Pa. At this time, the filter is considered effectively clogged and must be

replaced, as continuing to operate the spinline could result in catastrophic

damage to the pumping mechanism. The goal of the second objective, J2, is

to account for the debris that escapes the filter and thereby degrades the

quality of the fiber. We consider two representations for this goal, labeled

J2
I and J2

II. In J2
I , we minimize the percent of total debris that escapes the

filter. This percentage is the ratio of the mass of escaped debris to the mass

of incoming debris. We use this as a performance objective as other authors

have considered this measure in their work. In fact, Hookway (2) estimates

the number of particles that escape per 1000 lbs of polymer. In J2
II, we

minimize the total mass of debris that escapes the filter.

Optimization Landscapes

To gain insight into the design space, we generated representative optimiz-

ation landscapes for each of J2
I and J2

II. These landscapes helped to identify

the behavior of the objective functions. In Fig. 3(a), we fixed h ¼ 0.65

and ran the simulator for values of dp [ [25, 39] mm, using increments of

1 mm, to collect the percentage of debris escaping at each time step. More

debris escapes the filter at the beginning of the simulation and the longer

the filter operates, the smaller the percentage of debris that escapes. For

Figure 3. Values of J2
I functional for fixed dp, h.
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example, when dp ¼ 25 mm, then 8.6% of the debris in the slurry at the first

time step escapes the filter and by the end of the simulation, 4.8% of the

total debris has escaped. When considering dp ¼ 39 mm, 23% of the debris

in the slurry at the first time step escapes the filter and by the end of the

filter lifetime, 9.2% of the total debris has escaped. The difference in the

lifetimes of the filters is 72.1 hours and 100.8 hours, respectively. The

snapshot of this landscape shows that the filter lifetime is extended at

the expense of possibly severely degraded fibers. The landscape also shows

three distinct plateaus at the beginning of the time history. This corresponds

to the three distinct debris types and their respective particle sizes. Note

that at the end of the simulation, the percent of escaped debris varies almost

linearly as a function of pore diameter.

Alternatively, in Fig. 3(b), we fix dp ¼ 29.4 mm and sample points for

h [ [0.6, 0.74] using increments of 0.01. Here, when h ¼ 0.6, the filter

lasted 66.4 hours and at the end of the simulation, 6.2% of the debris had

escaped. Notice, however, that 13.8% of the debris escapes during the

initial time step. At the upper value for porosity, the same percentage of

debris escapes during the initial time step with 5% of the total debris

escaping by the end of the simulation. Although this is a lower percentage,

the filter lasts 111.2 hours before the pressure drop criterion is met. Thus

the filter lasts nearly 70% longer and as a result, more total debris is

actually being pushed through.

Similarly, in Figs. 4(a) and (b), we generated landscapes for J2
II and collected

the total mass of escaped debris at each time step for fixed values of porosity and

pore diameter, respectively. In Fig. 4(a), for a fixed porosity of h ¼ 0.65,

4.1622e2 5 kg of debris escapes when dp ¼ 25 and 1.1204e2 4 kg of debris

escapes for the upper bound, dp ¼ 39. Moreover, the amount varies nearly

linear at the final time as a function of dp. We see similar behavior in

Fig. 4(b). In this case the amount of debris escaping the filter is

4.9638e2 5 kg for the lower bound on porosity and 6.9613e2 5 kg for the

upper bound. The total mass of escaped debris at the final time clearly varies

less with changes in porosity than with changes in pore diameter.

Figure 4. Values of J2
II functional for fixed dp, h.
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Genetic algorithms

Genetic algorithms are part of a larger class of evolutionary algorithms and are

classified as population based, global search heuristic methods (15, 16).

Genetic algorithms are based on biological processes such as survival of the

fittest, natural selection, inheritance, mutation, and reproduction. Design

points are coded as “individuals” or “chromosomes”, typically as binary

strings, in a population. Through the above biological processes, the popu-

lation evolves through a user specified number of generations towards a

smaller fitness value. We outline the algorithm below.

1. Choose an initial population either randomly or by seeding a random

initial population with points using an engineering perspective

2. Evaluate the fitness of each individual

3. Iterate (produce generations)

a. Select individuals to reproduce

b. Perform crossover and mutation

c. Evaluate the fitness of the new individuals

d. Replace the worst ranked individuals with the new offspring.

During the selection phase, better fit individuals are arranged randomly to

form a mating pool on which further operations are performed. Crossover

attempts to exchange information between two design points to produce a

new point that preserves the best features of both “parent points”. Mutation

is used to prevent the algorithm from terminating prematurely to a suboptimal

point and is used as a means to explore the design space.

Termination of the algorithm is based on a prescribed number of gener-

ations or when the highest ranked individual’s fitness has reached a plateau.

Genetic algorithms are often criticized for their computational complexity

and dependence on optimization parameter settings, which are not known a

priori. However, if the user is willing to exhaust a large number of function

evaluations, the GA can help gain insight into the design space and locate

initial points for fast, local single search methods.

For this work, we use a MATLAB implementation of the NSGA-II

obtained from the Mathworks File Exchange (17). We point the reader to

(18) for the details of the algorithm. We use 20 individuals in each of 5 gene-

rations, and we use the default parameter settings for this implementation.

NUMERICAL RESULTS

We assume that the polymer fluid transporting the debris particles has a

power-law index (n) of 0.9. The density of the melt is assumed to be

0.00135 kg/cm3. There are three materials associated with particle debris,

based on possible sources for debris particles. The first material has

K. R. Fowler et al.718
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density 0.0089 kg/cm3, the second, 0.004 kg/cm3, and the third, 0.001 kg/
cm3. The sources for the debris particles include the polymer melt and bits

of machinery that move into the fluid during processing. The relative concen-

tration of the debris particles in the melt are assumed to be 1.5 ppm for the

first material, 0.5 ppm for the second material, and 1 ppm for the third

material.

The filter is assumed to be a sintered metal filter, so there is a parameter in

the model that represents the average size of a filter particle. We have assumed

a linear relationship between the filter pore diameter and the filter particle

diameter. As the porosity increases, so does the particle diameter. This

alters the retention properties of the filter, as larger particle diameters imply

larger pore spaces. The filter is single-layered, with circular cross-section

one inch in diameter and one centimeter thick.

For both sets of numerical results, we define the bound constraints for V

as L1 ¼ 0.1, U1 ¼ 0.7, and L2 ¼ 20 mm, U2 ¼ 40 mm. For the genetic

algorithm, we set an initial population size of 20 and allow for 5 generations.

The threshold value for the pressure drop is 35e6 Pa.

J2
I

The best parameters found to maximize the lifetime of the filter were

[h, dp] ¼ [0.7, 32 m] which lead to a lifetime of 102.5 hours while allowing

6% of the debris to escape. The final filter profile is given in Fig. 5.

As expected, the profile shows that most of the debris is trapped at the

inflow. The profiles for the remaining optimal points had similar debris distri-

butions and are thus not provided.

Figure 5. Mass fraction of trapped debris [0.68, 38.7 mm].
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For minimizing the percent of debris through, [h, dp] ¼ [0.61, 25.4 m]

which gave a filter lifetime of 62.3 hours allowing 5% of the debris to

escape. Surprisingly, the parameters that lead to the largest percentage of

escaped debris did not coincide with the longest filter lifetime. The parameters

were [h, dp] ¼ [0.59, 36.2 m] which gave a lifetime of 77.9 hours while

allowing 9% of the debris to escape the filter.

The tradeoff curve for optimizing Eq. [1] using J2
I is given in Fig. 6.

This scatter plot defines the Pareto points that an engineer could use to

design or select a suitable filter for his process. For all the design points

sampled, at least 5% of the debris escaped the filter. In particular, there is

a cluster of design points that lead to a filter lifetime of approximately

60 hours while allowing approximately 5% of the debris to escape. Figure 6

indicates that using the percent of escaped debris as a measure of the filter

performance does not allow for a straightforward decision. For example,

there are a significant number of design points that allowed between

7–7.5% of the debris to escape while the filter lifetimes vary from 50 to

100 hours.

The scatter plots in Fig. 7 show profiles of both the filter lifetimes and the

percentage of escaped debris as a function of the design variables. Note that in

Figure 7(b), filter lifetimes of 60 hours and 100 hours correspond to a tightly

clustered grouping of pore diameters and porosities. In Fig. 7(a), we see that

the GA primarily sampled porosity values in the interval [0.6, 0.7] while the

sampled pore diameter varied over the interval [24 mm, 40 mm].

J2
II

The tradeoff curve for optimizing Eq. (1) using J2
II is given in Fig. 8. The

relationship between the total mass of the debris escaping the filter and

Figure 6. Tradeoff for J2
I .
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the lifetime of the filter has a linear trend, which is quite different than the

behavior seen in Fig. 6. In particular, J2
II is the actual mass of the escaped

debris in comparison to J2
I which does not account for the fact that most of

the debris escapes at the beginning of the simulation, as shown in Figure 3.

The best parameters found to maximize the lifetime of the filter were

[h, dp] ¼ [0.68, 38.7 mm] which lead to a lifetime of 110.2 hours with

1.1302e2 4 kg of debris escaping.

For minimizing the total mass of debris through, [h, dp] ¼ [0.1, 28.5 mm].

For these parameters, the filter simulation only took one time step (0.1 hour).

Compared to the values found using J2
I , these values imply that J2

II is a better

measure of the competing objectives for the filter performance since in particular

both J2
II and dp are small in terms of minimizing the escaped mass of debris.

Figure 9 shows the profile for the lifetime of the filter as a function of the

decision variables for J2
II. The GA samples a wide range of porosity values, in

[0.1, 0.7], while the pore diameters appear to be more clustered. The scatter

Figure 7. Scatter profiles of objective functions.

Figure 8. Tradeoff for J2
II.
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plots look similar when considering the mass of escaped on the vertical axis

since the relationship between the amount of escaped debris and the filter

lifetime is nearly linear.

Comparison of Filter Performance for Extreme Points

In this section we summarize the pressure drop behavior and the debris

outflow distribution for the extreme points (i.e., optimal parameter sets)

obtained from the optimization. Both the pressure drop history and the

debris outflow distribution are measures of the filter performance but are

not directly accounted for in the competing objectives. Recall that

the best points found for maximizing the lifetime of the filter were

[h, dp] ¼ [0.7, 32 mm], using J2
I , and [h, dp] ¼ [0.68, 38.7 mm] for J2

II.

The best point for minimizing the percentage of escaped debris was

[h, dp] ¼ [0.61, 25.4 mm]. For minimizing the total mass of escaped

debris, the best point found was [h, dp] ¼ [0.1, 28.5 mm]; however, this

parameter set resulted in a filter which lasted one time step (0.1 hour).

Since the lifetime of the filter is so short for that parameter set, we

exclude that point in this analysis.

Figure 10 shows the pressure drop behavior for the three parameter sets.

As expected, the change in pressure drop is initially much more gradual for

two parameter sets associated with the maximum lifetime of the filter.

Viewing from left to right, the first curve in Fig. 10 is the pressure drop for

the porosity/pore diameter pairing [0.61, 25.4 mm]. The second pressure

drop curve is for the pairing [0.7, 32 mm], and the third curve is for the

pairing [0.68, 38.7 mm].

Representative profiles for the three types of debris material are shown in

Figs. 11 and 12. The left plot in Fig. 11 corresponds to inflow distributions

Figure 9. Scatter plot for J2
II.
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while the three other plots depict the outflow distributions for the three

extreme points. The outflow plots show that the filter captures debris

particles larger than the prescribed pore diameter, dp, while a fraction of the

smaller debris escapes.

Figure 10. Pressure drop curves for optimal points [0.61, 25.4 mm], [0.7, 32 mm],

and [0.68, 38.7 mm] (left to right).

Figure 11. Inflow debris distribution (left bar charts) and outflow distribution for

h ¼ 0.7, dp ¼ 32 mm (right bar charts).
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CONCLUSIONS

We have analyzed a three-dimensional filtration model using a genetic

algorithm to evaluate competing multi-objective functions. The multi-

objective functions measure quantities that are important to process

engineers involved in fiber manufacturing. This study has enabled us to

better understand the tradeoffs inherent in filter design relative to the

parameters we selected, porosity and pore diameter. The scatter profiles

demonstrate that subsets of the design space give values for the objective

functions that are minimally separated. These clusters of objective function

values perhaps define the best resolution to the inherent objective conflict in

this problem.

Our study underscores the usefulness of computational simulations for

polymer and filter manufacturers. In a matter of days, we were able to

analyze 100 design configurations for filters. The debris profile was

specified, but we could easily switch our formulation to study 100 distinct

debris profiles for a given set of filter parameters. The ability to focus a

design study will help industry effectively study manufacturing processes

and make cost-effective decisions.

Figure 12. Outflow distribution for h ¼ 0.61, dp ¼ 25.4 mm (left bar charts) and

outflow distribution for h ¼ 0.68, dp ¼ 38.7 mm (right bar charts).
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A genetic algorithm was chosen for this work since gradient information

is unavailable due to the black-box dependence on the simulator. The GA

allowed for an “organized” search of the design space. The design space is

small, though, as several other parameters exist that fully define the filter.

A more complete study of the filtration process is warranted, which we

believe is best accomplished using appropriate optimization algorithms.

This study will be complicated due to the interactions between the design

variables, but we believe it will provide valuable insight.

Towards this end, future work will incorporate other design parameters,

including multiple filter layers, the thickness of individual layers, and the

particle sizes and concentrations of the debris. Consideration of these

additional variables will sharpen the focus of the design objectives and lead

to better resolutions of the tradeoffs in filter design and usage. We also have

not included costs for filter replacement or product loss. We expect to have

objective functions associated with these costs in future studies.

In addition to increasing the number of decision variables, we will inves-

tigate penalty approaches to account for the escaped debris. Such formulations

allow an engineer to specify a constraint on the amount of escaped debris

which is incorporated as a penalty on the objective function. This will lead

to a single-objective function, with costs associated with each component.

Our optimization problem could then easily be expressed as minimizing

cost, and we could also take advantage of single-search derivative-free optim-

ization algorithms. These algorithms typically use fewer function evaluations

than population-based approaches, which would reduce our computational

costs.

The computational expense of the optimization may also be alleviated with

the use of surrogate functions in which a pseudo-landscape is built using known

objective function values (19). In that case, fast gradient-based methods can be

applied to a pseudo-landscape that is updated by a structured exploration of the

design space. This initial study and the smooth features of the landscapes

imply this problem is a good candidate for a surrogate modeling approach.

This initial optimization study used generic data values which are charac-

teristic of those used in practice. Future studies will be conducted with actual

industry data to ensure the effectiveness of this approach in a realistic environ-

ment. Moreover, an additional simulator, written in C as opposed toMATLAB,

is currently in development at CAEFF. The simulator implemented in C would

help decrease simulation time and facilitate the use of more sophisticated

optimization approaches already in use in industry.
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