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Abstract: Filtration of particle debris is an important component of the polymer fiber
melt-spinning process. The filter lifespan is determined by the pressure drop across the
filter, which increases as debris accumulates inside the filtration medium. The cost of
filter replacement is high, as is the cost of a loss of the finished fiber product due to
debris inclusion in the spun fiber. We use a multiobjective genetic algorithm to
examine the trade-off curve that evolves from these competing goals. A “blackbox”
simulator models the debris deposition, and we choose filter porosity and pore
diameter as the design variables. We provide numerical results and analysis for two
sets of competing objectives.

Keywords: Polymer processing, debris filtration, multi-objective, genetic algorithm

INTRODUCTION

Modeling of an entire fiber-spinning process is of great interest to researchers
in the Center for Advanced Engineering Fibers and Films (CAEFF). Initial
funding for CAEFF has been provided through the Engineering Research
Centers Program of the National Science Foundation, and CAEFF is transi-
tioning to a self-supported fiber and film research center. More information
can be found at the CAEFF website (1).
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One of the primary missions of CAEFF is to aid industrial partners in the
development and manufacture of new polymer products. Towards this end,
members of CAEFF have developed simulation tools for the various stages
of fiber production, from the initial polymer melt to the finished product
(see Fig. 1). One of the simulation tools is a three-dimensional model of an
extrusion filter, which separates debris particles from the polymer before
the polymer is spun into a fiber. Fibers are formed by pushing the molten
polymer through a spinneret, which is a multi-pored extrusion device. The
polymer solidifies into a fiber once it exits the spinneret and is exposed to
quench air. The properties of the fiber are severely compromised if debris
particles remain in the polymer during this part of the process, and this may
result in the loss of an entire production unit. In addition, replacing the
filter is costly; it often requires that the entire spinline be taken out of
service. While in-line filter replacement processes are being introduced,
Hookway (2) states that the trend in industry is to use “staged filtration,”
i.e., combining in-line filters with a filter at the spinneret.

A rough estimate of the cost associated with downtime due to filter
replacement is as follows. From (3), the profit on one metric ton of
polyester has averaged, over the last five years, $100 (a modest estimate).
Taking a typical flow rate of PET to be 2.5 g/min/hole, and figuring 3000
holes in a single spinneret, gives a loss in profit per hour of $45 when a
filter above a spinneret gets clogged. A large fiber-producing plant may
have several spinning lines with each containing 100 spinnerets. Furthermore,
PET is a high volume, low-cost commodity polymer. The financial impact of
short filter life on low volume, high profit (e.g. functional) fiber production
would be significantly greater.

Polymer Melt

() | Meterin g Pump
Filter

Spinneret
Air Quench

Convergence Guide
Godets
®

Spin Bobbin

Figure 1. Fiber melt-spinning process.
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The filter is often composed of a sintered metal, compressed with suffi-
cient force to produce a cake material, or layers of wired mesh, with mesh
spacings small enough to trap particles a few microns in diameter.
Important design parameters thus include the number of distinct filter layers
and the characteristics of each layer. These characteristics include the
length of the layer, the porosity, and the average diameter of the pore
spaces. The overall lifespan of the filter depends not only on the filter
design specifications but on the debris profile for the polymer being processed.

Previous CAEFF work on filtration (4, 5) focused on the development of
model equations, numerical simulation, and comparisons of the simulations
with experimental data. Pressure drop values were calculated for several
distinct fluid and filter types, and the results suggested that the simulator
accurately modeled the deposition process. In this work, we seek to under-
stand the effects of design parameters on the performance of the filter. We
measure the performance of a filter by the lifetime of the filter (determined
by the maximum allowable pressure drop across the filter) and the effective-
ness of the filter in debris removal. Maximizing the filter lifetime, while
simultaneously minimizing the mass of debris that escapes the filter, defines
an optimization problem with competing objectives. Clearly, a filter will
last longer if it traps nothing.

For this preliminary study, we use the initial porosity of the filter and the
average pore size diameter as the design variables. We analyze the perform-
ance using a multiobjective genetic algorithm to generate a set of Pareto
optimal solutions (6, 7). A design engineer can use these Pareto solutions to
find a preferred design as opposed to a completely optimal design, which
may not even exist as improvement in one of our objective functions necess-
arily leads to degradation in the other. We consider a nondominated, sorting
genetic algorithm (NSGA-II) (8) to generate the tradeoff curve.

The optimization problem is a simulation-based or “black-box” problem,
since an evaluation of the objectives requires output from the extrusion filter
simulator. This is a challenging class of problems because gradient infor-
mation, which is traditionally used to locate critical points, is not available.
Further adding to the complexity of this work is the fact that one simulation
can take anywhere from a few seconds to several hours, depending on the
filter parameters.

Traditional methods often combine competing objectives into a single
functional. Weights can be incorporated into the single objective to balance
the relative goals of the design. However, it is not always the case that the
single objective accurately achieves the same purpose as the multiobjective
approach (9—-11). Moreover, the single objective function leads to one
optimal point rather than a family of points that characterize the design
space. This work is a first attempt to use optimization algorithms in conjunc-
tion with a three-dimensional polymer filtration simulation tool. This initial
study is meant to help us understand the interplay between our chosen
design parameters and the capabilities of the filter.



09: 18 25 January 2011

Downl oaded At:

Design Analysis of Polymer Filtration 713

The paper is organized as follows. In Section 2, we describe the simu-
lation tool. In Section 3, we discuss the multiobjective functionals and
describe the genetic algorithm (GA). In Section 4, we provide numerical
results along with profiles of the design space. We summarize our findings
and provide direction for future work in Section 5.

FILTRATION MODEL

A schematic of the fiber melt-spinning process is given in Fig. 1. The metering
pump is used to maintain a constant flow rate; large pressure drops due to
debris loading can adversely affect the pump. In addition, debris particles
must be removed before the polymer reaches the spinneret. After that point,
any remaining debris particles will be spun into the fiber, leading to degra-
dation in fiber properties.

The filtration code (i.e., the “simulator’”) used for this work is based on
results from CAEFF researchers. In (12), Edie and Gooding studied one-dimen-
sional filtration equations to predict pressure drop across a filter medium. This
work was extended to three dimensions by Seyfzadeh, Zumbrunnen, and Ross
(5), which led to the development of the simulator. A restricted version of the
filtration simulator is available for academic use only; a full-featured licensed
version is also available. More information is available from the CAEFF website.

The material entering the filter consists of molten polymer, unmelted
polymer gel particles (formed when the polymer does not completely melt
in the heating/mixing stage), and other debris such as metal particles. It is
assumed that the density of the mixture is the same as the polymer density,
i.e., the density of the debris is negligible in comparison to the polymer
density. It is also assumed that the thickness of the filter is small so that
effects due to gravity can be ignored (5, 12).

The flow through the filter is governed by the continuity equation (mass
conservation) and Darcy’s law, modified to account for the non-Newtonian
behavior of the polymer melt. The debris entering the filter is specified in
terms of a mass fraction relative to the mass of the mixture.

As the flow enters a computational cell, the mass of captured debris of
each distinct material type is calculated. This mass is determined by
comparing the debris particle sizes against the average pore diameter of the
cell. All of the debris particles larger than the pore diameter are partitioned
into an array. A retention function is then used to determine how many of
these particles will be captured by the filter. Any particles not captured
within that computational cell are transported into adjacent cells.

The porosity is updated by subtracting the volume of deposited debris
over the time step from the porosity value at the beginning of the time step.
The volume is obtained by multiplying the mass deposited by the density of
that particular debris type. After the porosity is updated, a new average pore
diameter for the computational cell is calculated.
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The new values for porosity and pore diameter are used to calculate the
permeability and pressure drop. The permeability parameter k is currently
modeled using a Blake-Kozeny relationship that depends on the average
diameter of the filter pore size, d,, and the current filter porosity, n. The
filter porosity is a dimensionless quantity that measures the volume of the
void space to the total volume of the medium. The relationship for k,
derived in (13) and used in (5, 12), is

2.3
150(1 — )

This permeability relationship is valid for fluids with Reynolds number less
than 1. The Reynolds number associated with our simulations, calculated
using the formula in (14), is around 1077,

The simulator is written in Matlab. For one particle size/porosity pair, an
execution takes approximately 160 minutes on a Dell Latitude D620 laptop
with an Intel core duo 1.83 Ghz processor. Additional details about the
filtration simulator can be found in (5).

Debris loading is characterized statistically, as in (2). Truncated normal
statistical distributions provide flexibility in fitting experimental measure-
ments. Inflow distributions are specified using a standard normal probability
density function,

1 1(x—1)2
fx) = \/_26*5(7

270

a left truncated normal distribution of the form

0 —00 < x < xp,
Jirw(x) = f@) X, <x<oo
LO; f (x)dx

and a right truncated normal distribution

rw
frrn@) = 4 [ f (0)dx <X =R

0 xp < x < o0

respectively.

Filters are often composed of multiple layers. Each layer is characterized
by a porosity, an average pore diameter, and a retention function. The
retention function models the efficiency of the filter by providing the prob-
ability that a particle of a given size is captured by the filter. The graph of a
typical retention function is displayed in Fig. 2. The retention functions are
found by fitting empirical data to a growth function of Boltzmann-
Sigmoidal type with four fitting parameters (5).
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Figure 2. Typical filter retention function.

As the filter clogs, the volume of the void space decreases, leading to a
decrease in the permeability. The pressure drop must then increase in order
to maintain a constant mass flow rate throughout the filter. The large values
of pressure required at the inlet may lead to damage of the metering pump
(see Fig. 1), so the filter must be replaced once the pressure drop reaches a
threshold value. The threshold value is set at 35e6 Pa in the simulator,
which is comparable to existing industry thresholds (5).

OPTIMIZATION STRATEGY

Our goal is to maximize the lifetime of a filter while simultaneously mini-
mizing the amount of debris that escapes. These are competing objectives
relative to the design parameters porosity (n) and pore diameter (d,). For
instance, if m =1, then the filter is completely open and no debris is
trapped inside the filter; thus the filter lasts indefinitely. If n = 0, then the
no debris escapes from the filter but the filter lifetime is zero.

We pose the optimization problem as

max J; (x, w)
min J; (x, w)
subject tox € (), (1)

where J; represents the lifetime of the filter, J, is a measure of the mass of
debris escaping the filter, x = {n, d,}, w is output from the simulator, and Q
defines the bound constraints component-wise on the decision variables X;.
Specifically, Q= {u € IRZ:Li <x; < U}, i=1, 2, where the upper and
lower bounds L; and U; satisty 0 < L; < U; < o0,
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Approaching Eq. (1) using the NSGA-II algorithm, described below,
leads to a set of Pareto points. Pareto solutions are those for which improve-
ment in one objective can only occur with the worsening of another objective.
We consider two distinct formulations of Eq. (1), which differ in the definition
of J,. We describe the formulations below.

Problem Formulations

Both formulations define J; as the time it takes for the pressure drop to reach
35e6 Pa. At this time, the filter is considered effectively clogged and must be
replaced, as continuing to operate the spinline could result in catastrophic
damage to the pumping mechanism. The goal of the second objective, J5, is
to account for the debris that escapes the filter and thereby degrades the
quality of the fiber. We consider two representations for this goal, labeled
Jﬁ and Jg. In Jé, we minimize the percent of total debris that escapes the
filter. This percentage is the ratio of the mass of escaped debris to the mass
of incoming debris. We use this as a performance objective as other authors
have considered this measure in their work. In fact, Hookway (2) estimates
the number of particles that escape per 1000 Ibs of polymer. In J%, we
minimize the total mass of debris that escapes the filter.

Optimization Landscapes

To gain insight into the design space, we generated representative optimiz-
ation landscapes for each of J4 and J%. These landscapes helped to identify
the behavior of the objective functions. In Fig. 3(a), we fixed m = 0.65
and ran the simulator for values of d, € [25, 39] wm, using increments of
1 pm, to collect the percentage of debris escaping at each time step. More
debris escapes the filter at the beginning of the simulation and the longer
the filter operates, the smaller the percentage of debris that escapes. For

n
=

o on
o o

percent debris escaped
P I S S

26

Pl

~
0 ime (hours) 0 085

(b) J; for fixed d,

tima (hours)

porosity

pore diameter (microns)

(a) J‘f for fixed 7

Figure 3. Values of J5 functional for fixed dy, M.
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example, when d, = 25 um, then 8.6% of the debris in the slurry at the first
time step escapes the filter and by the end of the simulation, 4.8% of the
total debris has escaped. When considering d,, = 39 um, 23% of the debris
in the slurry at the first time step escapes the filter and by the end of the
filter lifetime, 9.2% of the total debris has escaped. The difference in the
lifetimes of the filters is 72.1 hours and 100.8 hours, respectively. The
snapshot of this landscape shows that the filter lifetime is extended at
the expense of possibly severely degraded fibers. The landscape also shows
three distinct plateaus at the beginning of the time history. This corresponds
to the three distinct debris types and their respective particle sizes. Note
that at the end of the simulation, the percent of escaped debris varies almost
linearly as a function of pore diameter.

Alternatively, in Fig. 3(b), we fix d,, = 29.4 pm and sample points for
n € [0.6, 0.74] using increments of 0.01. Here, when 1 = 0.6, the filter
lasted 66.4 hours and at the end of the simulation, 6.2% of the debris had
escaped. Notice, however, that 13.8% of the debris escapes during the
initial time step. At the upper value for porosity, the same percentage of
debris escapes during the initial time step with 5% of the total debris
escaping by the end of the simulation. Although this is a lower percentage,
the filter lasts 111.2 hours before the pressure drop criterion is met. Thus
the filter lasts nearly 70% longer and as a result, more total debris is
actually being pushed through.

Similarly, in Figs. 4(a) and (b), we generated landscapes for /5 and collected
the total mass of escaped debris at each time step for fixed values of porosity and
pore diameter, respectively. In Fig. 4(a), for a fixed porosity of = 0.65,
4.1622e — 5 kg of debris escapes when d,, = 25 and 1.1204e — 4 kg of debris
escapes for the upper bound, d, = 39. Moreover, the amount varies nearly
linear at the final time as a function of d,. We see similar behavior in
Fig. 4(b). In this case the amount of debris escaping the filter is
4.9638e — 5 kg for the lower bound on porosity and 6.9613e — 5 kg for the
upper bound. The total mass of escaped debris at the final time clearly varies
less with changes in porosity than with changes in pore diameter.

@

total debris escaped (kg)
~

= total dabris escaped (kg)
IS

So

40

0
time (hours) 0 2 pore diametar (microns)

(a) J2 for fixed i (b) J! for fixed d,

1ime (hours) 0 055

porosity

Figure 4. Values of J¥ functional for fixed dy, M.
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Genetic algorithms

Genetic algorithms are part of a larger class of evolutionary algorithms and are
classified as population based, global search heuristic methods (15, 16).
Genetic algorithms are based on biological processes such as survival of the
fittest, natural selection, inheritance, mutation, and reproduction. Design
points are coded as “individuals” or ‘“chromosomes”, typically as binary
strings, in a population. Through the above biological processes, the popu-
lation evolves through a user specified number of generations towards a
smaller fitness value. We outline the algorithm below.

1. Choose an initial population either randomly or by seeding a random
initial population with points using an engineering perspective
2. Evaluate the fitness of each individual
3. Iterate (produce generations)
a. Select individuals to reproduce
b. Perform crossover and mutation
c. Evaluate the fitness of the new individuals
d. Replace the worst ranked individuals with the new offspring.

During the selection phase, better fit individuals are arranged randomly to
form a mating pool on which further operations are performed. Crossover
attempts to exchange information between two design points to produce a
new point that preserves the best features of both “parent points”. Mutation
is used to prevent the algorithm from terminating prematurely to a suboptimal
point and is used as a means to explore the design space.

Termination of the algorithm is based on a prescribed number of gener-
ations or when the highest ranked individual’s fitness has reached a plateau.
Genetic algorithms are often criticized for their computational complexity
and dependence on optimization parameter settings, which are not known a
priori. However, if the user is willing to exhaust a large number of function
evaluations, the GA can help gain insight into the design space and locate
initial points for fast, local single search methods.

For this work, we use a MATLAB implementation of the NSGA-II
obtained from the Mathworks File Exchange (17). We point the reader to
(18) for the details of the algorithm. We use 20 individuals in each of 5 gene-
rations, and we use the default parameter settings for this implementation.

NUMERICAL RESULTS

We assume that the polymer fluid transporting the debris particles has a
power-law index (n) of 0.9. The density of the melt is assumed to be
0.00135 kg/cm’. There are three materials associated with particle debris,
based on possible sources for debris particles. The first material has
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density 0.0089 kg/cm?, the second, 0.004 kg/cm?, and the third, 0.001 kg/
cm’. The sources for the debris particles include the polymer melt and bits
of machinery that move into the fluid during processing. The relative concen-
tration of the debris particles in the melt are assumed to be 1.5 ppm for the
first material, 0.5 ppm for the second material, and 1 ppm for the third
material.

The filter is assumed to be a sintered metal filter, so there is a parameter in
the model that represents the average size of a filter particle. We have assumed
a linear relationship between the filter pore diameter and the filter particle
diameter. As the porosity increases, so does the particle diameter. This
alters the retention properties of the filter, as larger particle diameters imply
larger pore spaces. The filter is single-layered, with circular cross-section
one inch in diameter and one centimeter thick.

For both sets of numerical results, we define the bound constraints for ()
as Ly =0.1, U;=0.7, and L, =20 pm, U, =40 um. For the genetic
algorithm, we set an initial population size of 20 and allow for 5 generations.
The threshold value for the pressure drop is 35e6 Pa.

J5

The best parameters found to maximize the lifetime of the filter were
[n, d,] = [0.7, 32 w] which lead to a lifetime of 102.5 hours while allowing
6% of the debris to escape. The final filter profile is given in Fig. 5.
As expected, the profile shows that most of the debris is trapped at the
inflow. The profiles for the remaining optimal points had similar debris distri-
butions and are thus not provided.

1e-06

27e-12

Depth (cm)

4 42-15

7 2e-18

12e-2C

Widih in x—direction (cm) Width in y-direction (cm)

Figure 5. Mass fraction of trapped debris [0.68, 38.7 wm].
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For minimizing the percent of debris through, [n, d,] = [0.61, 25.4 u]
which gave a filter lifetime of 62.3 hours allowing 5% of the debris to
escape. Surprisingly, the parameters that lead to the largest percentage of
escaped debris did not coincide with the longest filter lifetime. The parameters
were [, d,] =[0.59, 36.2 u] which gave a lifetime of 77.9 hours while
allowing 9% of the debris to escape the filter.

The tradeoff curve for optimizing Eq. [1] using J3 is given in Fig. 6.
This scatter plot defines the Pareto points that an engineer could use to
design or select a suitable filter for his process. For all the design points
sampled, at least 5% of the debris escaped the filter. In particular, there is
a cluster of design points that lead to a filter lifetime of approximately
60 hours while allowing approximately 5% of the debris to escape. Figure 6
indicates that using the percent of escaped debris as a measure of the filter
performance does not allow for a straightforward decision. For example,
there are a significant number of design points that allowed between
7-7.5% of the debris to escape while the filter lifetimes vary from 50 to
100 hours.

The scatter plots in Fig. 7 show profiles of both the filter lifetimes and the
percentage of escaped debris as a function of the design variables. Note that in
Figure 7(b), filter lifetimes of 60 hours and 100 hours correspond to a tightly
clustered grouping of pore diameters and porosities. In Fig. 7(a), we see that
the GA primarily sampled porosity values in the interval [0.6, 0.7] while the
sampled pore diameter varied over the interval [24 pm, 40 pwm].

14
J2

The tradeoff curve for optimizing Eq. (1) using J4 is given in Fig. 8. The
relationship between the total mass of the debris escaping the filter and

1200
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Figure 6. Tradeoff for J5.
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Figure 7. Scatter profiles of objective functions.

the lifetime of the filter has a linear trend, which is quite different than the
behavior seen in Fig. 6. In particular, J% is the actual mass of the escaped
debris in comparison to J5 which does not account for the fact that most of
the debris escapes at the beginning of the simulation, as shown in Figure 3.
The best parameters found to maximize the lifetime of the filter were
[, d,] =1[0.68, 38.7 um] which lead to a lifetime of 110.2 hours with
1.1302e — 4 kg of debris escaping.

For minimizing the total mass of debris through, [7, d,] = [0.1, 28.5 wm].
For these parameters, the filter simulation only took one time step (0.1 hour).
Compared to the values found using J5, these values imply that J5 is a better
measure of the competing objectives for the filter performance since in particular
both J4 and d,, are small in terms of minimizing the escaped mass of debris.

Figure 9 shows the profile for the lifetime of the filter as a function of the
decision variables for /4. The GA samples a wide range of porosity values, in
[0.1, 0.7], while the pore diameters appear to be more clustered. The scatter
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Figure 8. Tradeoff for J%.
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Figure 9. Scatter plot for J%.

plots look similar when considering the mass of escaped on the vertical axis
since the relationship between the amount of escaped debris and the filter
lifetime is nearly linear.

Comparison of Filter Performance for Extreme Points

In this section we summarize the pressure drop behavior and the debris
outflow distribution for the extreme points (i.e., optimal parameter sets)
obtained from the optimization. Both the pressure drop history and the
debris outflow distribution are measures of the filter performance but are
not directly accounted for in the competing objectives. Recall that
the best points found for maximizing the lifetime of the filter were
[0, d,] =10.7, 32 um], using J5, and [n, d,] = [0.68, 38.7 pm] for J5.
The best point for minimizing the percentage of escaped debris was
[n, d,] =1[0.61, 25.4 pm]. For minimizing the total mass of escaped
debris, the best point found was [7, d,] = [0.1, 28.5 wm]; however, this
parameter set resulted in a filter which lasted one time step (0.1 hour).
Since the lifetime of the filter is so short for that parameter set, we
exclude that point in this analysis.

Figure 10 shows the pressure drop behavior for the three parameter sets.
As expected, the change in pressure drop is initially much more gradual for
two parameter sets associated with the maximum lifetime of the filter.
Viewing from left to right, the first curve in Fig. 10 is the pressure drop for
the porosity/pore diameter pairing [0.61, 25.4 wm]. The second pressure
drop curve is for the pairing [0.7, 32 wm], and the third curve is for the
pairing [0.68, 38.7 wm].

Representative profiles for the three types of debris material are shown in
Figs. 11 and 12. The left plot in Fig. 11 corresponds to inflow distributions
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while the three other plots depict the outflow distributions for the three
extreme points. The outflow plots show that the filter captures debris
particles larger than the prescribed pore diameter, d,,, while a fraction of the

smaller debris escapes.
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Figure 11. Inflow debris distribution (left bar charts) and outflow distribution for

1n = 0.7, d, = 32 pm (right bar charts).
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Figure 12. Outflow distribution for 7= 0.61, d, = 25.4 um (left bar charts) and
outflow distribution for n = 0.68, d,, = 38.7 pm (right bar charts).

CONCLUSIONS

We have analyzed a three-dimensional filtration model using a genetic
algorithm to evaluate competing multi-objective functions. The multi-
objective functions measure quantities that are important to process
engineers involved in fiber manufacturing. This study has enabled us to
better understand the tradeoffs inherent in filter design relative to the
parameters we selected, porosity and pore diameter. The scatter profiles
demonstrate that subsets of the design space give values for the objective
functions that are minimally separated. These clusters of objective function
values perhaps define the best resolution to the inherent objective conflict in
this problem.

Our study underscores the usefulness of computational simulations for
polymer and filter manufacturers. In a matter of days, we were able to
analyze 100 design configurations for filters. The debris profile was
specified, but we could easily switch our formulation to study 100 distinct
debris profiles for a given set of filter parameters. The ability to focus a
design study will help industry effectively study manufacturing processes
and make cost-effective decisions.
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A genetic algorithm was chosen for this work since gradient information
is unavailable due to the black-box dependence on the simulator. The GA
allowed for an “organized” search of the design space. The design space is
small, though, as several other parameters exist that fully define the filter.
A more complete study of the filtration process is warranted, which we
believe is best accomplished using appropriate optimization algorithms.
This study will be complicated due to the interactions between the design
variables, but we believe it will provide valuable insight.

Towards this end, future work will incorporate other design parameters,
including multiple filter layers, the thickness of individual layers, and the
particle sizes and concentrations of the debris. Consideration of these
additional variables will sharpen the focus of the design objectives and lead
to better resolutions of the tradeoffs in filter design and usage. We also have
not included costs for filter replacement or product loss. We expect to have
objective functions associated with these costs in future studies.

In addition to increasing the number of decision variables, we will inves-
tigate penalty approaches to account for the escaped debris. Such formulations
allow an engineer to specify a constraint on the amount of escaped debris
which is incorporated as a penalty on the objective function. This will lead
to a single-objective function, with costs associated with each component.
Our optimization problem could then easily be expressed as minimizing
cost, and we could also take advantage of single-search derivative-free optim-
ization algorithms. These algorithms typically use fewer function evaluations
than population-based approaches, which would reduce our computational
costs.

The computational expense of the optimization may also be alleviated with
the use of surrogate functions in which a pseudo-landscape is built using known
objective function values (19). In that case, fast gradient-based methods can be
applied to a pseudo-landscape that is updated by a structured exploration of the
design space. This initial study and the smooth features of the landscapes
imply this problem is a good candidate for a surrogate modeling approach.

This initial optimization study used generic data values which are charac-
teristic of those used in practice. Future studies will be conducted with actual
industry data to ensure the effectiveness of this approach in a realistic environ-
ment. Moreover, an additional simulator, written in C as opposed to MATLAB,
is currently in development at CAEFF. The simulator implemented in C would
help decrease simulation time and facilitate the use of more sophisticated
optimization approaches already in use in industry.
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